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Abstract 

In the present paper we describe an algorithm for the computation of real radicals of polyno- 
mial ideals. Moreover, results concerning the computational requirements and the complexity as 
well as some theoretical consequences are presented. @ 1998 Elsevier Science B.V. 

1. Introduction 

This paper is a sequel to the work o f  Becker and Neuhaus [2] where an algorithm for 

the computation o f  the real radical was published for the first time. For the convenience 

o f  the reader we present this algorithm in a revised form together with more background 

material. The issue o f  complexi ty is dealt with and further theoretical and algorithmical 

studies are included. The term "computation of  an ideal J from a given input ideal 1" 

has to be understood in the following strong sense: Given any finite set f l  . . . . .  f s  of  

generators of  the input ideal I a finite set o f  generators of  the ideal J is constructed 

algorithmically. 
In classical algebraic geometry Hilber t ' s  Nullstellensatz is o f  fimdamental impor- 

tance: Let k be a field with algebraic closure k and I some ideal o f  the polynomial  

ring k[X1 . . . . .  )~]. We set 

~7 , ( I )  = {x_ E lcn l f (x)  = 0 for a l l f E I }  

for the set of  zeros o f  I over /c. Then -- according to Hilber t ' s  Nullstellensatz - the 

vanishing ideal 

J k ( V )  = { f  Ek[X1 . . . . .  Xn] If(x_) = 0 for all x E  V} 
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of the variety V := , ~ ( I )  equals the radical 

x/-I = {U Ek[X1 . . . . .  X~] [ fr  EI  for some r E  N}. 

Because of the one-to-one correspondence between the irreducible k-varieties of the 
affine space lc" and the prime ideals of k[X~,... ,A~] the variety U i ( I )  can be studied 
by means of v/]. This explains the demand for an algorithm to compute radicals in 
polynomial rings over a field. Already Hermann was dealing with that problem in 
her treatise "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale" 
(Mathematische Annalen, Vol. 95) which was published in 1926. Since then many 
papers about radical computations have been published in the literature (cf. [1, 6, 9, 
14, 23]). As a sample, let us mention the algorithms described in [9, 14]: Given as 
input a finite set of generators f~ . . . . .  f r  of some ideal I ~ k[X1 . . . . .  X~], a finite set 
of generators gl . . . . .  g~ of the radical v/] is constructed by means of localizations and 
calculation of square-free parts. Thereby the degree of the output polynomials 9l . . . .  ,9s 

can be bounded by a function of type max {degf i  [ 1 < i < r} 2°~°2~. Moreover, these 
algorithms can be realized algorithmically - at least in the case of Char(k) = 0 - if 
the field k is effectively given, i.e. if  the elements of k can be coded effectively and 
if the operations + , - , . , . - 1 , =  can be realized upon this codification. 

In the present paper we are dealing with the corresponding problems in real algebraic 
geometry. Thereby the situation is as follows: Let k be a formally real field and r a 
preordering of k, i.e. r C k such that 

r+rC_z, z . r C r ,  k2 C zand - l ~ r .  

As usual k denotes a fixed algebraic closure of k. Now, if I <~ k[X1 . . . . .  )~] then we 
set 

~ ( I )  = U :/:R(I) 
R 

for the set of r-real points of I where R ranges over all real closed intermediate fields 
of /elk satisfying r c_ R 2 = {x2lx E R}. According to the Real Nullstellensatz which 
was proved independently by Krivine et al. (cf. [15, 5, 21]) in the 1960s the vanishing 
ideal of ~;(1)  in A :-- k[Xl . . . . .  )~] equals the r-radical 

" ~ =  fEA i f2 r  + si a~r I  for some r E N ,  mEN0,  siEz, 
i=l  

aiEA(i= 1 . . .m)} .  

Similarily to the situation over an algebraically closed field, the set ~ ( I )  can be 
studied by means of its vanishing ideal J k ( ~ ( I ) )  = '~ff : for example the geometric 
Zariski-dimension of ~U~(I) equals the Krull-dimension of ~ (see [2, Proposition 7] 
for detail). From this fact arises the interest in an algorithm for the computation of 
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r-radicals as it is described in the present paper. But before giving a short overview 
over the following sections let us recall once more that this method was essentially 
presented at the MEGA-92 conference in Nice (of. [2]). However, in the following 
sections the algorithm is described in a conciser way. In particular, the complicated 
recursion technique has been simplified. Moreover, we are able to present theoretical 
consequences of this algorithm which solve some open problems formulated in [2]. 

In Section 2 we start by defining the set "F'~(I) of r-real points as well as the r- 
radical ,~'7. Next we examine the compatibility of the ~.-operator with the calculation 
of ideal intersections and the extension of ideals in quotient tings. Preparatory to the 
Real Nullstellensatz which is presented at the end of that section a characterization of 
r-real prime ideals is given. 

In Section 3 the concept of isolated real points is introduced. Thereby a point 
x_ E ~i , ( I )  is called isolated if it is isolated in the topological space ~UR(I) (with respect 
to the order topology) for some real closed intermediate field R of tclk. The set of 
all these isolated real points is denoted by Sqso(1). We prove that the vanishing ideal 
liso = Jk(~Sso(I)) of  these isolated real points is the (finite) intersection of maximal 
ideals M1 . . . . .  Mr such that any zero-dimensional component of ~ occurs among the 
Mi. This fact allows the construction of the zero-dimensional components of ,~q: Al- 
though we do not know how to compute liso exactly we are able to give an iterative 
method for the construction of an ideal J such that d imJ  _< 0 and I C J C Iiso which 
meets our requirements in connection with the calculation of r-radicals. 

In Section 4 the algorithm for the computation of r-radicals is presented. We start 
with the univariate case in some polynomial ring k(Y1 . . . . .  Ym)[X] which can be handled 
via polynomial factorization and the sign change criterion. Next we show how to extend 
this method to the general zero-dimensional case. A central result of Section 4 is the 

equality 

s c_(x~,,..,x,} 

Thus ,~q is completely determined by the r-radicals of the ideals (I - k ( S ) ) i s  o describing 
the finitely many real isolated points of its extension ideals I • k ( S ) ,  S C_{XI . . . .  ,X~}. 

Combining the equality with the results obtained so far we immediately get a method 
to construct the r-radical of polynomial ideals of arbitrary dimension. 

Following the algorithm for the computation of real radicals we demonstrate in 
Section 5 that for any preordering r of k the r-radical of an ideal I = ( f l  . . . . .  f r )  <~ 

2o(~ 2) 
k[X~,... ,)~] is generated by polynomials of degree less than max {deg f i  I1 <_ i < r}  . 

In Section 6, preparing Section 7 but also of interest in its own, a constructive proof 
of the Open-Mapping Theorem of Elman, Lam and Wadsworth is presented. Given any 
finitely generated extension F I k of formally real fields satisfying certain computational 
conditions this proof makes it feasible to compute the restriction of any constructible 

subset C C_X(F)  to k. 
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The dependence of the a-radical ~/i on the ordering ~ E X(k )  is the subject of 
Section 7. It is proved that for any ideal I of some affine k-algebra A the space of 
orderings X(k )  is a finite union of constructible subsets C~ . . . . .  C~ C__X(k) such that the 
mapping a ~ , ~/7 is constant on any Ci. Moreover, using the results of Section 6 
a description of the Ci can be obtained algorithmically under certain computational 
conditions. 

2. Real radicals 

Throughout this paper a k-algebra is associative, commutative, and has a unit. 

Definition 2.1. Let (k, z) be a preordered field and I an ideal of some k-algebra A. 
(a) The z-radical of I is defined by 

• ~/1= f E A I f 2 r +  siaZEI f o r s o m e r E ~ , m E [ ~ o ,  s iEz,  a iEA 
i= l  

In the case z = ~ k  2 we simply write r{/l instead of , ~  for the so-called real 
radical of I. 

(b) I is called z-real iff ~/7 = I. Finally, I is called real iff r ~  = I. 

It is elementary to prove that ~ is a radical ideal. Moreover, ~ is the (with respect 
to inclusion) smallest z-real ideal containing I. Next we observe that the calculation 
of z-radicals is compatible with the calculation of ideal intersections and the extension 
in quotient rings. 

Lemma 2.2. Let (k,z) be a preordered field, I, J ideals of  some k-algebra A and S 
a multiplicatively closed subset of  A satisfying 1 E S and 0 f~ S. Then we have: 

(a) ~ = Y7 n 4/7, 
(b) ~ - - =  xYls. 

Thereby ~ denotes the z-radical of  the extension ideal Is of I in the quotient ring 
As which naturally is a k-algebra. 

We point out that our algorithm for the computation of z-radicals strongly relies on 
the elementary properties stated above. 

Lemma 2.3. Let (k, z) be a preordered field and I a z-real ideal of some k-algebra 
A. Then all minimal primes of I are z-real as well. 

Proof. Let P be a minimal prime of I and f E x~fi, e . g .  f2r q_ S E P for some r E [~, 
s E ~ zA 2. We have to prove that f E P. 



R. Neuhaus/Journal of Pure and Applied Algebra 124 (1998) 261-280 265 

Since PAp is the only minimal prime of the radical ideal Ip in the local ring Ap we 

ihave Ip = PAe and thus I(e) = P. From f2~ + s  E P = I(p) we derive that t ( f  z~ +s )  E I 
for some t E A\,P. But then (t f)2~ + tZrs E1 and finally t f  E ~ = I C_ P. Since t $ P 

we conclude that f E P. 

Corollary 2.4. Let (k, z) be a preordered field and I an ideal o f  some k-algebra A. 
Then ~ = ~ P, where P ranges over all z-real primes containing I. 

Proof. As a z-real ideal ~ is radical and thus the intersection of its minimal primes. 

These are z-real by Lemma 2.3. 

For any formally real field k we denote by X ( k )  its set of orderings. 

Proposition 2.5. Let (k, z) be a preordered f ieM and P a prime ideal o f  some k- 

algebra A. Then the following statements are equivalent: 

(a) P is z-real. 
(b) There is some ~ E X ( k )  satisfying ot D ~ which can be extended to an ordering 

~ o f  the function field k(P) = Quot(A/P). 
(c) There is some c~ E X ( k )  satisfying ot ~ z such that P is c~-real. 

Moreover, i rA is an affine k-algebra and P a maximal ideal o f  A then the statements 

(a) - (c) are equivalent to: 
(d) There is some ~ E X ( k )  satisfying ~ D_ z such that k(P) can be embedded into 

some real closure of  (k, ~). 

Proof. 
(a) ~ (b): Let ~ denote the quadratic semiring 

"~:= s ia~Ek(P)  l m E N o ,  sl . . . . .  SmEZ, al . . . . .  a ~ E k ( P  
" i=l 

generated by z in k(P). Then P is z-real iff ~ is a preordering of k(P),  i.e. - 1  ~ ~c. 
By choosing an ordering ~ E X ( k ( P ) )  extending ~ we obtain via • := 0~A k an element 

of X ( k )  as required. 
(b) ~ (c): Let be f E ~ ,  e.g. f2r q_ ~-~finite sia2 E P for some r E N, si E ~, ai E A. 

Taking residues modulo P we obtain the equation y-2r ..~ Zfinite sia~ -~- 0 in the ordered 

field (k(P), ~) from which we conclude that j~ = 0 in k(P), i.e. f E P. 
(c) ~ (a): The assertion immediately follows from the inclusion chain P C_ ~ C_ 

~rp __ p, 

Finally, we remark that in the case of an affine k-algebra A for any maximal ideal 
P of  A the function field k ( P ) =  A/P is a finite (algebraic) extension of k. [] 

Proposition 2.6. Let (k, z) be a preordered field and I an ideal o f  some affine k- 
algebra A. Then we have ~/I = N M, where M ranges over all z-real maximal ideals 

o f  A containing I. 
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Proof. Let be f E A \ , f / .  By Corollary 2.4 we conclude that f ~ P for some z-real 
prime P containing I.  We proceed by demonstrating that there is some z-real maximal 
ideal M of A such that M D_ P(_D I )  and f ~ M. 

From Proposition 2.5 we obtain that there is an 2 E X ( k )  satisfying ~ _D z which 
can be extended to some c~ E X ( k ( P ) ) .  Now let R be a real closure of (k, e). Then the 
Artin-Lang Theorem (cf. [19, Ch. XI, Section 3, Theorem 5]) yields the existence of 

some k-homomorphism 

• ~ R °  

It remains to verify that the kernel of  the k-homomorphism 

~ ' A  >B ~R 

is a maximal ideal of  A as required. [] 

Given any field k we write k for its algebraic closure. 

Definition 2.7. Let (k, z) be a preordered field and I <3 k [ ~  . . . . .  )~]. Then 

~ ( I ) '  = {x ~ ~ ( I ) I x  ~ R ~ for some real closure R of k extending 

an order c~ _D z} 

denotes the set of  z-real points o f  I. 

Theorem 2.8. Let (k, z) be a preordered f ield and I <3 k[X1 . . . . .  X~]. Then we have 

Jk(~F'z( I ) ) = ,~7. 

Proof. It is easy to verify that any f E ~ vanishes on ~ ( I ) .  Thus let be f E A \ ,~/7. 
We have to show that there is some x_ E 3V;(1) such thatf(x_) ¢ 0. 

By Proposition 2.6 there exists some z-real maximal ideal M of A satisfying M _D I 
and f ~ M whereby the function field k ( M )  can be embedded into some real closure R 
of (k,e), ~ E X ( k )  such that c~ _D z, by Proposition 2.5. Now, i f -  • A ~ A/M = k ( M )  

denotes the canonical epimorphism then the point x_ := (X1 . . . . .  Xn) E k ( M )  ~ C_ R n C_ lc ~ 

has the demanded properties. 

Lemma 2.9. Let  (k ,z)  be a preordered field and P E  Spec(k[Xl . . . . .  X~]). Then the 

following statements are equivalent: 

(a) P is >real. 
(b) There is an ordering ~ E X ( k )  satisfyin9 c~ D_ z and a prime Q in R[X1 . . . . .  X,], 

where R is the real closure o f  (k, ~), such that P = Q N k[Xl . . . . .  A~]. 

Proof. The implication (b) ~ (a) is easy to verify. We restrict ourselves to prove 

that (a) implies (b). 
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Let P be r-real. Then there is some ~ E X(k) ,  ~ D r, such that ~/ff = P (Proposition 
2.5). If  R is a real closure of (k,e) then (as a consequence of the Real Nullstellensatz 
2.8) 

P =  ~'-~ = "Y-~ . R n k [ X~ . . . .  , X ,  ] 

and thus P = Q M k[Xl . . . .  ,Xn] for some minimal prime Q of r~/ff. R in R[X1 . . . . .  X~]. 
But as a minimal prime of the real ideal ~ / f f -R  the ideal Q is real as well (Lemma 
2.3). [] 

3. Isolated real points 

In the sequel any real closed field R will be understood as a topological field under 
its order topology, and the affine space R ~ will be endowed with the product topology. 

Definition 3.1, Let F be a formally real field with algebraic closure P and I __. 

F [N . . . .  ,Y~]. 
(a) A point x_ E Uf ( I )  is called isolated real point of  [ if  there is some real closure 

R of F such that x is isolated in the topological space ~/)~(I)C R ". 
(b) The set of all isolated real points will be denoted by ~/~so(1). 
(c) Finally, we define Iiso := JFCtqso(I)) (the ideal describing the F-Zariski-closure 

of ~iso(I)). 

Obviously, Iiso is a real ideal. The importance of liso in connection with the compu- 
tation of real radicals is due to the following fact. 

Proposition 3.2. Let (F,~) be a preordered field and I ~ F[Xl . . . . .  X~]. Then liso is 
contained in any zero-dimensional component o f  ~'7. 

Proof. Let M be a zero-dimensional component of ~/7. Then M is ~-real by Lemma 
2.3. Using Lemma 2.9, M can be extended to a (necessarily) maximal ideal J~ 
R[Xl . . . . .  Xn] whereby R denotes a real closure of  (F,~), ~ E X ( F )  such that ~D-~. 
The reality of 2~ implies that ~¢ has a zero x E R n. 

Next we claim that /~ is a component of r~i" R. I f  not we would find a further 

real prime Q between ~ I .  R and ~/. But then 

,~/}-C_ {) C3 F[XI . . . . .  )~] =: QC_M. 

Since M is a minimalprime of ~/] we get Q = M  and (because R[X1 . . . . .  X~]IF[X1 . . . . .  
An] is an integral extension) {) = A) - a contradiction. 

As a component of r~/I" R the ideal M occurs in the primary decomposition of 

r ~ .  R, e.g. r~/l. R =[ ' ] i  Pi f3 57/. Now choose f E (Ni e i ) \  M. Then ~v'R(1)n { f  ¢ 0} 
= {x_}, i.e. x__ is isolated in "UR(I) and Y'~R(57/) = {x_} C_ ~iso(1). Applying J r ( . )  we 

finally obtain 

Iiso = oCrF(~iso(I)) C ~a'F(X ) = M. 
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Lemma 3.3. Let R be a real closed fieM with algebraic closure P = R( v/-Z-f ), Q a 
prime o f  fi'[X1 . . . . .  X~] and P := Q N R[X1 . . . . .  X~] E Spec(R[Xl . . . . .  )~]). Then P . fi" = 
Q (~ a(Q) whereby a E Aut(/~ IR) denotes the conjugation. 

The assertion is verified by a straightforward calculation. 

Proposition 3.4. Let F be a formally real field, I <3 F[X1 . . . .  ,X,] and R a real closed 

intermediate field o f f  IF. Moreover, let Q be a minimal prime o f  the extension ideal 
1 . F  satisfyin 9 d := dim Q > 0 and xE  ~R(Q). I f  x_ is a regular point o f  ~p(1) then 
x is not isolated in the topological space ~F'e(I). 

Proof.  Without loss of  general i ty ,  we may assume that d = dim Q E { 1 . . . . .  n - 1 }. 
Let a E A u t ( F  JR) denote the conjugation. Then it follows from x E Vp(Q)C~R n that 

x_ = a(x_) E ~v'~(a(Q)) whereby ~r(Q) is a minimal prime of  a ( I .  F )  = I -  F.  
I f  Q ~ a (Q)  then x would be a zero of  the two distinct irreducible compo- 

nents Up(Q), ~p((r(Q)) of  ~up(I) and thus a singular point o f  Up(1) contrary to 
the assumption. We conclude that Q = a (Q)  and - because of  Lemma 3.3 - P := 
Q N R[X11 . . . . .  )~] E Spec(R[Xl . . . . .  )~])  with P .  P = Q. Note that d i m P  = dim Q = d 
and x E ~R(P).  

Now let f l  . . . . .  fr  be a set o f  generators o f  P. Then Q = P .  P = ( f l , . . . , f r )  
/~[X1 . . . . .  X~], and because of  the regularity of  x in ~je(1) the Jacobian 

( ~ 3 f i / ~ X j ( x ) ) i = l . . . r , j = l . . .  n has maximal rank n - d  (cf. [16, Ch. VI, Proposition 1.5]). This 
fact implies that x is a regular point o f  P and thus P - -  r~,ff (cf. [3, Proposition 3.3.15]). 

According to [3, Proposition 3.3.7] there exist n - d polynomials ga,..., 9~-d E P as 
well as a neighbourhood U of  x_ in R n such that 

~/fR(gl . . . . .  gn_d)f"lU = "~R(P)f-)U and Rank(gg-y-~ (x_)~ = n - d .  
--UA~ j / i=l...n--d,j=l...n 

But now the theorem o f  implicit functions (cf. [3, Corollary 2.9.6]) yields that x is not 
isolated in "g'R(gl . . . . .  g,-a) A U C_ VR(I) ,  thus not isolated in ~V'R(1). [] 

Using Proposition 3.4, it can easily be verified that Iiso equals the unit ideal or has 
dimension zero. 

Proposition 3.5. Let F be a formally real field and I ~ F[Xl . . . . .  )~]. Then we have 
r 

dimliso <_ O, i. e. Iiso = Ni=i Mi for some real maximal ideals Ml . . . . .  Mr. 

The importance of  liso in connection with the computation of  ~ relies on the fact 
that (according to Proposition 3.2) any zero-dimensional component M of  ~ occurs 

among the Mi. 
For the sake of  easy reference the following notations will be used: I f  I <1 

F[X1 . . . . .  X~] then 

~sing(I) := {x_ ~ ~t/'f(I)Ix a singular point o f  ~ ( I ) }  
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denotes the singular locus of  ~ F ( I )  and 

/sing : =  ~q~F (3/Fsing(I)) 

its vanishing ideal. Now let I <3 F[X1 . . . . .  X~] be a radical ideal of  dimension 
d E {0 . . . .  , n-- 1 } and I (a) = ( f l  . . . . .  f~) its d-dimensional equidimensional component, 
i.e. the intersection of  its d-dimensional minimal primes. Then the Jacobian criterion 
(cf. [16, Ch. VI, Proposition 1.5]) yields 

$~sing(I (d)) = ~/'p(J(I(d),n -- d ) )  and I}id~ -= V/J(I(a), n -- d), 

where J (I  (a), n - d ) denote s the ideal generated by I (a) and all (n - d)  x (n - d)-minors of  
the Jacobian (Ofi/3Xj)i=k..r,j=l..., in F[XI . . . . .  X,]. Note that because of  Krull's principal 
ideal theorem (cf. [16, Ch. V, Theorem 3.4]) n - d  < r holds. 

Corollary 3.6. Let  F be a formal ly  real f ield and I <l FIX1 . . . . .  X,] a radical ideal o f  
dimension d E { 1 . . . . .  n -  1 }. I f  I = ~ae_ o I (e) is the equidimensional decomposition o f  
I ,  i.e. 1 (e) the intersection o f  the e-dimensional minimal primes o f  I ,  then the ideal 

J : :  ~ed~o l I (e) A I (d)sing has the following properties." 
(a) I C J  and dim J <  d, 

(b) "t/so(I ) c ~/~so(J), 
(C) Jiso C Iiso- 

Proof.  It suffices to prove (b): Let ~ C ~//iso(I), i.e. x_ is isolated in ~t~(1) for some 
real closed intermediate field R of  P IF. Then 

d--1 

x E U "¢/F(I(e)) U ~iiso (I (a)) 
e=0 

e=O 
d-1 ) 

: ~F'p I (e) f-'l Ising 
\e=O 

= ,~ J} ( j ) ,  

and the fact that x_ is isolated in ~trR(1) implies that x_ is isolated in ~t/~R(J), especially 

x ~ ~ s o ( J ) .  [ ]  

Iterated application of Corollary 3.6 immediately yields: 

Proposition 3.7. Let  F be an effectively 9iven formal ly  real f ieM and I <1 F[X1 . . . . .  X,]. 
Then we are able to construct an ideal J <] F[XI . . . . .  X~] satisfying dim J < 0 and 

I c J  C liso. 

The construction of  J is described in more details in the proof of  Lemma 5.4. 
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4. Computation of real radicals 

Lemma 4.1. Let  R be a real closure o f  an ordered f ie ld (k,:t) and p an irreducible 

polynomial  o f  k[Ya . . . . .  Ym,X] (m E No) such that d e g x p  > 0. Then the following 
statements are equivalent." 

(a) (p)k(Yl  . . . . .  Ym)[X] is ~-real. 

(b) (p)k[Yl  . . . . .  Ym,X] is a-real. 

(c) The ordering ~ can be extended to k ( p )  = Quot(k[Yl . . . . .  Ym,X] / (p) ) .  
(d) p is indefinite over R, i. e. there are points x_, x tER m+l satisfying p ( x ) . p ( x  r) < 0 

(in R). 

Lemma 4.1 is an immediate consequence of Proposition 2.5 and the sign change 
criterion [11, Ch. II, Section 12, Theorem 4]. 

To cope with an arbitrary polynomial f Ek(Yl  . . . . .  Ym)[X] we now introduce the 
following computational assumptions: The preordered field (k, z) should be effectively 
given and it should allow 

(F) polynomial factorization of multivariate polynomials over k as well as 
(R) an algorithm to test if a given irreducible polynomial p Ek[Y1 . . . . .  Ym,X] is 

z-real over k(Yt . . . . .  Ym), i.e. if  ~(X/~ = (P) in k(Yl . . . . .  Ym)[X]. 

Remark 4.2. (a) It is well known that the assumption (F) is equivalent to univariate 
factorization (cf. [22]). 

(b) According to Lemma 4.1 the test demanded in (R) can be realized in many 
cases via quantifier elimination (see [2] for details). 

Lemma 4.3. Let  (k , z )  be a preordered f ie ld meeting the computational assumptions 

(F) and (R) stated above. Then there is an algorithm to compute the z-radical in 

k( Yi . . . . .  Ym )[X]. 

ProoL Let F := k(Y1 . . . . .  Ym) and f EF[X] ,  without loss of generality, f ~ F. First 
of all, the factorization of f in F[X] can be carried out using (F) (cf. [22, p. 289]). 
Next, let p be an irreducible factor of  f in F[X].  Without loss of generality, we may 
assume p E k [ Y l  . . . . .  Ym,X]. In view of Lemma 4.1, the assumption (R) allows us to 
decide whether the z-real part of p over F equals p or 1, i.e. whether (p)F[X] is 
z-real or not. Now, if f = c .  ~I P7 ~ is the prime factorization of f in F[X] then 

We stress the fact that the reduction method described in the following which reduces 
the multivariate to the univariate case does not need the requirements (F) and (R). 
Thus these strong additional computational conditions imposed on k are exclusively 
demanded for the handling of the univariate case. However, in Proposition 4.7 we will 
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show that - at least in the case of  an ordered field (k, :~) - these assumptions are 
essentially necessary. 

Lemma 4.4. Let (k, ~) be a preordered field satisfying the computational assumptions 
(F) and (R) and I a zero-dimensional ideal of the polynomial ring k(Y1 . . . . .  Ym) 
[X1 . . . .  ,Xn]. Then it is possible to compute ,~/7. 

Proof.  Let be F := k(Y1 . . . . .  Ym). Because of  v q  c ~/7 we may assume that ! is already 
radical (for the computation of  x/]  see [6, 8, 12, 17, 22, Lemma 92]). Then for "almost 
all" vectors c = (c2 . . . . .  c , )  E Q , - I ,  i.e. excluding the points of  a finite union of  proper 
affine linear subspaces of  Q , - 1 ,  the automorphism 

q~ := (Pc : f (Xl . . . . .  X~ ) , , f + ciXi,X2 . . . . .  X~ 
i=2 

puts q~(I) into general position with respect to X1 (cf. [8, 9]). Alternatively, it is well 
known that a suitable vector c can be computed deterministically. However,  from a 
practical point of  view the strategy of "guessing and testing" seems to be superior. 

In accordance with the Shape-Lemma the reduced GrSbner basis G of  ~p(I) with 
respect to the pure lexicographical ordering with X1 < - . .  < X, has the form 

G = { X j - g j ( X l ) ( j  = 2 . . . n ) ,  gl(Xl)} 

with a square-free polynomial gl(X1) (cf. [8]). I f  gl = r I  pi is the prime factorization 
of  gl in F[X1], then the 

Mi :=  (A) - 9j(X1) ( j  = 2 . . .n),  pi(X1)) 

are the maximal ideals in the primary decomposition q ) (1 )=  NiMi. We have 

F[Xll . . . . .  Xn]/Mi ~- FIX]~ (pi(X)  ) 

via 

f (Xl  . . . . .  X~) + Mi ~ f (X ,  gz(X) . . . .  ,g , (X))  + (pi(X)).  

Hence Mi is a r-real ideal o f  F[X1 . . . .  ,Xd iff (pi(X))  is a ~-real ideal o f  F[X]. There- 

fore, we obtain 

A 
M, u-real 

where ~(X1 ) is the z-real part o f  gl(X1 ) in F[X1]. Finally, we have 

Preparatory to Theorem 4.5 let us define (I  - k(Xl . . . . .  )~))iso := I • k(X1,... ,X,) for 
S = {X1 . . . . .  X,}, in addition to Definition 3.1 and compatible with Proposition 3.2. 
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Theorem 4.5. Let (k, 3) be a preordered field and I ~ A := k[X~ . . . . .  X,]. For any 
subset S C_{X~,... ,X~} let j(s~ denote an ideal of  the quotient ring A • k(S) satisfying 
d i m J  (s) _< 0 and I • k(S) C_d (s) C_ (I • k(S))is o . Then 

s c_ {x~,...,~ } 

Proof. ( c )  For any subset S C_{X1,...,X~} we have 

~-IC_ (~ '7 . k (S ) )  NA = ~ / I . k ( S )  NAC_ ~Jv/J~NA. 

(_D) Since ~/7 is radical it is sufficient to prove that As  ( ~ Jx / J~  N A) is contained 
in any minimal prime ideal P of  x~/7 : Let So be a maximal subset of  {X1 . . . . .  X~} 
independent mod P (cf. [13]) and T := k[So]\{0}.  Then P r  is a zero-dimensional 
component of  xY]r --- x}Q-~r. Thus we conclude in consideration of  Proposition 3.2 

s 

Because of  Theorem 4.5 the concept o f  real isolated points seems to be crucial for 
the theory of  real radicals. The representation given above will be used in Section 5 

and Section 7. 
As a consequence of  Theorem 4.5, Lemma 4.4 and Proposition 3.7 we obtain: 

Theorem 4.6. Let (k, z) be a preordered field satisfying the computational assump- 
tions (F) and (R) and I an arbitrary ideal of  k[Xl . . . . .  )~]. Then it is possible to 
compute ~ .  

For the computation of  the contraction ideals and ideal intersections in the formula 

of  Theorem 4.5 see [9, Corollary 3.8]. 
Finally, let us return to the computational conditions imposed on (k, z). Naturally, it 

has to be required that the coefficient domain k is effectively given, i.e. the arithmetic 
operations and the comparison between elements can be performed. This assumption is 

already sufficient for the computation of  the ordinary radical in k[A~ . . . . .  Xn] if  k has 
zero characteristic (cf. [9, 14]). For the construction of  z-radicals in k[X1 . . . . .  J~] our 
algorithm requires in addition the validity of  (F) and (R). Obviously, any algorithm 
computing z-radicals in polynomial rings over k supplies an algorithm to test if a 
given irreducible p ck[Y1 . . . . .  Ym,X] is z-real over k(Yl . . . . .  Y,~) while it remains an 
open question if there is any preordered field (k, z) allowing the construction of  z- 
radicals but not meeting the factorization assumption. However,  as was pointed out to 
us by Tomas Sander the factorization assumption cannot be omitted in the case of  an 
ordering z = ~ EX(k ) .  For an arbitrary preordering this problem is still unsolved. 

Proposit ion 4.7. Let (k, :~) be an ordered field allowing the computation of s-radicals 
in k[X1 . . . . .  A~] (for arbitrary n). Then k permits polynomial factorization as well. 
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Proof .  Let R be a real closure of  (k, cQ coded fi la Thorn (cf. [3, Proposition 2.5.4]). 
Since R allows polynomial factorization (cf. [3, p. 9]) it is sufficient to prove that k 
is a decidable subset of  R, i.e. for any x E R it can be decided if x E k.. 

Let x E R  be coded by the system f0 = 0, f l  > 0 . . . . .  fr  > 0, the f i E k [ X ]  \ k. 
Then the roots of  the ideal I :=  ()Co, T 2" f l  - 1 . . . . .  T~. f r  - 1) k[X, Tl . . . . .  T~] over 
R are exactly the 2 r points 

G R r+l 

whose vanishing ideal Jk(~UR(I)) = ~ we are able to construct according to the 
assumption. Using the technique of  Gr tbner  bases it is possible to compute a generator 

g of  the non-trivial principal ideal ~/i:qk[X]. Note that 0 ~ fo  E ~/iNk[X] and 1 ~ 
because of  ~UR(1) ¢ (3. But then x E k iff deg 9 = 1. [] 

5. Complexity 

Let (k,z) be a preordered field and I = ( f l  . . . . .  J r )  ~ k[Xl . . . . .  A~]. Following our 
algorithm for the computation of ~ we will show that ~ is generated by polynomials 

o f  degree less than 

m a x { d e g f i [ 1  < i < r} 2°~;~. 

Since the computation of  ~ is performed by 
• calculation of  z-real parts over rational function fields k(Xl . . . .  ,Xm), 0 < m < n, and 
• computation of ideal operations in k(X1 . . . . .  X~)[X~+l . . . . .  X~] such as intersections, 

contractions, etc., which again are realizable by Gr tbner  basis computations in poly- 

nomial rings over k 
it is crucial to control the increase of  polynomial degrees caused by the Buchberger- 
algorithm. But before we cite a result from [10, 20] resp. [4] on this topic let us define, 

for the sake of  easy reference, 

max{deg f I f E F } ,  F ¢ 0, 
D e g F : =  0, F = 0  

for any finite subset F C k[Xl . . . . .  X~] and 

Deg I :=  min{ D e g F  IF  C k[X1 . . . . .  )~] finite, (F )  = I } 

for I _~/c(Xl . . . . .  Xm)[Xm+l . . . . .  X,], 0 _< m < n. 
Note that any ideal I ___ k(X1 . . . . .  X~)[X~+1 . . . . .  X~] with D e g I  _< 1 is trivial or a 

n 
prime ideal generated by linear forms ~ i = l  aiX,. + c (al . . . .  ,an, c ~ k). 
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Lemma 5.1. Let  I be an ideal o f  k[Xt . . . . .  X~] and < an admissible ordering on the 

terms in X1 . . . . .  X~. Then there is a (not necessarily reduced) Grdbner basis G o f  1 

with respect to < such that 

Deg G < (Deg 1) 2°~"~. 

Proof.  [10, 20] or [4]. [] 

Remark  5.2. It seems difficult to compute Deg I .  Nevertheless, we make use of  this 

concept in stating the result. For algorithmic purpose it may he more suitable to deal 

with Deg F where I = (F) .  

In an algorithmic setting Lemma 5.1 can be formulated alternatively as follows: 
Given any finite set F C k[Xi . . . . .  X~] generating I ,  a Gr6bner basis G of  I with respect 
to < can be constructed out o f  F such that Deg G _< (Deg F )  2°~"~. 

The following statements can be rephrased in the same manner. In Lemmas 5.3-5.8 
and Theorem 5.9 we list bounds obtained by applying Lemma 5.1 to some fundamental 
algorithms described in [9, 14] or [22] (see the references given below) and then to 

our algorithm for the computation of  r-radicals. 

L e m m a  5.3. Let  k be a f ie ld  o f  characteristic 0 and I <~A :=k(Xl , . . .  ,Xm)[Sm+l,.. .  ,)~], 
0 < m < n - 2 and d := d i m I  C {1, . . . ,  n - m - 1}. I f 1  (e) denotes the intersection o f  

the e-dimensional minimal primes o f  I (e = 0 . . .  d )  then: 

(a) D e g I  (a) < (Deg l )  2°~"' 

(b) There is an ideal J <] A with d i m J  < d and x/I  c x /J  C d-1 Ae=O I(e) such that 

D e g J  < (Deg I )  2°~°~. 

Proof.  [14, Section 2] and Lemma 5.1. 

Lemma  5.4. Let  k be a formally  real f ield and I <~ A :=  k ( ~  . . . . .  X~)[X~+l . . . . .  A~], 
0 < m < n. Then there is an ideal J ~ A  with d i m J  < 0 a n d l C J C l i s o  such that 

D e g J  < (Deg 1) 2°'°2'. 

Proof.  Without loss of  generality, d i m l c  {1 . . . . .  n -  m - 1} and D e g I  _> 2 may be 
assumed. We proceed by defining inductively ideals I0 : = / ,  11, . . . ,  1l ~ A satisfying 

dim//  > dimli--1, (//)iso _~ (Ii+l)iso (i = 0 . . . l -  1) and d im/ t  < 0 where l < d i m / <  
n - m. Defining J := I + Ii we obtain an ideal as required whereby the asserted degree 

bound follows from Degl i  < (Deg I )  2'°'"~ (i = 0 . . .  1). 
Let 0 <_ i < l and 1 < di := dimli  < n - m. For e = 0 . . . d i  let 1} e) denote the 

intersection of  the e~timensional  minimal primes of  li. Then Ii+l is constructed out of  

Ii by setting Ii+l := Ji " J ( I Y  D, n -- m - di), where 
_ _ odi-1 I[ e) such that DegJ i  < (Degl i )  2°~"~ • Ji <1 A with dim Ji < di and v ~ / C  v ~ / C  i ie=0 

(Lemma 5.3(b)), 
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• J ( I y  '), n -- m - d i )  <1 A generated by l~d,) and all (n - m - d i )  x (n - m - d i ) -  

minors of the Jacobian ( g f ~ / ~ X v ) ,  the fu E k[X1,... ,A~] generators of I y  ') satisfying 

degfu _< D e g l y  ~) _< (Deg/i) 2°~°~ (Lemma 5.3(a)). 

Lemma 5.5. L e t  k be a f i e ld  o f  character is t ic  0 and I <1 k(X1 . . . . .  Xm)[Xm+l . . . . .  A~] 
zero-dirnensional,  0 < m < n. Then 

Deg vff _< (Deg I)  2°~"~. 

Proof. By [22, Lemma 92; 9, Proposition 3.1] and Lemma 5.1. [] 

Lemma 5.6. L e t  ( k , r )  be a preordered  f i e ld  and  I <3 k(Xa . . . .  ,Xm)[Xm+1 . . . . .  A~] zero-  

dimensional ,  0 < m < n. Then 

Deg ~ _< (Deg I) 2~"~. 

Proof. By Lemmas 4.4 and 5.5. 5 

Lemma 5.7. L e t  be I <1 k (X i , . . . ,X ,n ) [X~+l , . . . ,Xn] ,  0 <_ m < n. Then 

Deg(I A k[Xl . . . . .  X~]) _< (Deg I)  2°~"~. 

Proof. By [9, Corollary 3.8] and Lemma 5,1. [] 

Lemma 5.8. L e t  be I i , . . .  ,12; <3 k[X1 . . . . .  ~ ] ,  l E ~.  Then 

Deg Ii _< max{ 2, Degh . . . . .  Degh~ } 2°~. 

V =1 / 

Proof. By [9, Corollary 3.2] and Lemma 5.1. [] 

Combining Lemmas 5.4, 5.6-5.8 with Theorem 4.5 we finally obtain: 

Theorem 5.9. L e t  (k, r)  be a preordered  f i e ld  and  I <1 k[Xl . . . . .  J~]. Then 

Deg ~,~ _< (Deg 1) 2°~-'~. 

We end with a remark on the time complexity in the sense of sequential arithmetical 
networks over k where the k-operations are measured with unit costs: Let (k, r) be a 
preordered field such that the r-real part of any polynomial f E k[Xl . . . . .  Xm+t] over 

k(X1 . . . . .  X~), 0 _< m < n, is computable within time ( d e g f )  2°~-'~, e.g. k = Q. Then 
the number of k-operations necessary to construct {//(fl . . . . .  f~)k[X1,...,Xn] out of 

f l , - - . , f ,  can be bounded by a function of type max {degfi  I 1 < i < r} 2°~°~ as well. 
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6. Computational aspects of the Open-Mapping Theorem 

This section is preparatory to Section 7 where we analyze the dependence of  the 0~- 
radical ~'~ on the ordering c~ E X(k) .  To begin with let us recall some basic definitions 
and notations. 

Let k be a formally real field and X ( k )  its space of  orderings. Then the Harrison-sets 

Hk(al . . . .  ,a~) :=  {~ E X ( k )  lal >~ 0 . . . . .  ar >~ 0} C_X(k) 

(a~,... ,at c k)  form a basis of  the so-called Harrison-topology on X(k) ,  Note that the 
sets Hk(al . . . . .  a~) are clopen with respect to this topology. 

A subset C C_X(k) is called constructible if it can be obtained from Harrison-sets 
Hk(al . . . . .  ar) by applying a finite number of  boolean operations, i.e. taking finite 
unions, intersections and complements in X(k) .  Via induction on these boolean expres- 
sions it can easily be demonstrated that the constructible subsets o f  X ( k )  are exactly 
the finite unions of  Harrison-sets H~(a~ . . . . .  a~), the ai E k. 

The set o f  all constructible subsets of  X ( k )  is denoted by C(k). We point out that 
any C E C(k) is representable as a (formal) boolean expression involving finitely many 

Harrison-sets //1 . . . . .  //~ whereby any Hi = Hk(al . . . . .  i f )  can be coded by the vector 

(al . . . . .  a¢) E U.  
Finally, we define Ck(I) := { ~ E X ( k ) ] I  co-real } for any ideal I of  some k-algebra A. 
Now let F [ k be a finitely generated extension of  formally real fields where X ( F )  and 

X ( k )  are endowed with the Harrison-topology. The Open-Mapping Theorem (cf. [7, 
Theorem 4.9]) states that the restriction resFik : X ( F )  ~ X(k) ,  :~ ~ ~ ~f3k is an open 
rnappping. As resF[k is a closed map (cf. [7, Theorem 4.1]) and X ( k )  is quasi-compact 
(cf. [18, Theorem 4.1]) this implies that resFl~ C E C(k) for any C E C(F). Following 
[7, pp. 16-18] a constructive proof  of  this fact will be outlined demonstrating that the 
restriction of  any constructible subset C E C(F) to k can be realized algorithmically 
under certain computational conditions via symbolic manipulation on the boolean ex- 
pressions mentioned above (see Theorem 6.5). In this sense the statement "C E C(k)"  
also means that a subset C C_ X ( k )  can be constructed algorithmical]y. We assume that 
k allows factorization of  polynomials. The referee has pointed out that the following 
results could possibly be obtained under weaker assumptions. 

Lemma 6.1. Let k be a formally real field and p an irreducible polynomial of  k[X]. 
Then C~((p)k[X]) E C(k). 

Proof.  For any c~ E X ( k )  we have c~ E Ck((p)k[X]) iff p(X)  has a root in some real 
closure of  (k, cQ. Thus the leading coefficients of  the polynomials in the Sturm sequence 
of  p yield a description of  Ck((p)k[X]) as required (cf. [3, Corollary 1.2.10]). 

Lemma 6.2. Let k be a formally real field, 6) E k and al . . . . .  a~Ek(O). Then 

resk(o)Lk Hk(e) (a l , . . . ,  ar) E C(k). 
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Proof.  Without loss of  generality, a l , . . . , ~  # 0 may be assumed. We start by con- 
structing a primitive element ~ of  the finite (algebraic) extension k(O, x / ~  . . . . .  v/-~) I k 
with minimal polynomial p E k[X]. Then 

resk(O)lk Hk(o)(al . . . . .  a~ ) = im (resk(o,v~,...,4~,)lk) 

= i m  (resk(~)lk) 

6.1 
= Ck((p)k[X]) c C(k). 

Thereby the last equality holds because of  

E im(resk(~)lk) -,' ',- ~ can be extended to k(zg) --~ k[X]/(p)  = k (p)  

¢=~ (p)k[X] is ~-real 

.~, '- ~ E Ck((p)k[X]).  [] 

Lemma 6,3. Let k be a formally real .field and f l  . . . . .  fr  ~ k[Y] \ {0}, f i  = gi " h2 
where gi,  hi E k [ Y ] \ { 0 }  and gi squarefree (i = 1 . . .r).  I f  (1 . . . . .  (~ are the pairwise 
distinct roots o f  gl . . . . .  gr in Ic and 

then 

< v_< }cZ 

resk(Y)lk Hk( r ) ( f l (Y)  . . . .  , f r ( Y ) )  = U resk(o)lk Hk(o)(gl(O) . . . . .  gr(O)) E C(k). 
OEV 

Proof. The equality 

resk(r)rk H~(r)(f l (Y)  . . . . .  f r ( Y ) )  = U resk(o)lk Hk(o)(gl(O) . . . . .  gr(O)) 
OEV 

can be verified following the second proof  of  [7, Theorem 4.9]. The constructibility of  
the right-hand side then follows from Lemma 6.2. [] 

Theorem 6.4. Let F Ik be a finitely generated extension o f  formally real fields. Then 
resFIk C C C(k ) for any C ~ C(F). In particular, resFIk : X ( F )  ~ X ( k )  is an open 
mapping. 

Proof.  By induction it suffices to prove the assertion for a simple extension F = 
k(y)  I k: If y is algebraic over k then Lemma 6.2 can be applied, otherwise we are 
done by Lemma 6.3. [] 

In an algorithmic setting the proofs given above demonstrate the following fact. 

Theorem 6.5. Let F = kO~ . . . . .  yn) l k be a finitely generated extension o f  formally 
real fields which is given in such a way that for any Yi (1 <_ i < n) which is 
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algebraic over k(yl . . . . .  Z-1)  its minimal polynomial is known. I f  k allows polynomial 
factorization then the restriction of  any constructible subset C E C(F) to k can be 
realized aloorithmically. 

7. Variation of orderings 

By combining Theorem 4.5 with the methods described in Section 6 we are able to 
examine the dependence of  the c~-radical ~ on the ordering e E X(k) .  The central 

result of  this section is the following one: Let I be an ideal o f  some affine k-algebra 

A and ~1 the equivalence relation on X(k )  defined by 

: ¢ = *  

Then there are only finitely many equivalence classes with respect to ~I ,  and all these 

classes are constructible subsets of  X(k).  Moreover, an upper bound for I X ( k ) / ~ l  I 
can be obtained. 

Lemma 7.1. Let k be a formally real field and I <3 k(Y1 . . . . .  Yz)[X], m C ~o. Then the 
partition of  X (k  ) induced by ~t  consists of  a finite number of constructible subsets. 

Proof. Without loss of  generality, we may assume that I is a non-trivial ideal generated 

by a polynomial f = c- l--[i~ pmi with irreducible factors /~ . . . . .  p~. For i = 1 ... r we 

define 

G :=  Ck((pi)F[X]) = resFIk CF((pi)F[X]) 6.1@6.4 C(k) 

where F :=  k(Y1 . . . . .  Ym). Then the sets D1N ' " A D r  with D~ = (7/ or Di = X ( k )  \ Ci 
form a partition of  X(k) ,  and on any of  these sets Dl n . . .  nDr (which may be empty) 

the mapping ~, ~ ~ is constant (Lemma 4.3). 

Lemma 7.2. Let k be a formally real field and I <3 k(Y1 . . . . .  Ym)[XI . . . . .  X~] zero- 
dimensional, mE ~o. Then the partition of  X (k )  induced by ~I consists of  a finite 
number of constructible subsets. 

Proof. Let ~o be a linear F-automorphism of F[XI . . . . .  A;] putting I into general posi- 

tion with respect to )(1 where F :=  k(Yl . . . . .  Ytn). I f  g1 is a generator o f  the non-trivial 

principal ideal v/-~NF[X1] then 

for any ~ E X(k )  (Lemma 4.4). Thus, the assertion follows from Lemma 7.1. D 

Theorem 7.3. Let k be a formally real field and I an ideal of  some affine k-algebra A. 
Then the partition of X(k  ) induced by ~1 consists of  a fn i te  number of constructible 

subsets. 
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Proof.  Since any affine k-algebra is k-isomorphic to some quotient algebra 

k[X~ . . . . .  Xn]/J and ~ Q ~  = , ~ / J  for any ideal I __. k[Xl . . . . .  P~] containing J we 
may restrict ourselves to the case A = k[X1 . . . . .  X~]. But then the assertion follows 

from Theorem 4.5 and Lemma 7.2. [] 

By combining the results o f  Section 5 with the proofs of  7.1-7.3 we obtain the 

following result. 

Proposition 7.4. Let k be a formally real field and I <3 k[X1 . . . . .  )~]. Then the number 

IX(k)/~sl of equivalence classes can be bounded by a function of  type 

~ 0  ( n 2 ) 

2(Deg I)" . 

Moreover, if  k allows polynomial factorization then the equivalence classes with re- 
spect to ,-,o I can be constructed algorithmically (whereby some of  the classes computed 

may be empty subsets of  X(k)) .  

In [2, Corollary 3] we proved that for any ideal I of  some noetherian k-algebra 

A and for any preordering z o f  k there are finitely many orderings :q . . . . .  :~U D 
such that ~ = NN=I ~',77. By using Theorem 7.3 it is evident that suitable orderings 

~1 . . . . .  ~r E X ( k )  can be chosen from a (finite) set of  representatives of X ( k ) / ~ s :  

Corollary 7.5. Let k be a formally real feld,  I an ideal of  some affine k-algebra 
A and {~t . . . . .  ~ r } C X ( k )  a system of  representatives of  the equivalence classes 

[~1] . . . . .  [xr] 9iven by ~s. Then for any preorderin9 ~ of  k we have 

 7:f"l{  1i: 1... r,   _ forsome  I ,l}. 
Remark 7.6. The referee added the interesting remark that the decision "I  is a-radical" 

can be done without referring to polynomial factorization. Instead one can use elimi- 
nation of  quantifiers where no factorization requirement is needed. 
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